Page 5 of 11 There was discussion of the future effort of this task force. The group felt that refining the data input and defining the output (the Final Report outline) will provide guidance in designing a data reduction method. Because the ATTC data is a major input to WP4, continued work with ATTC to complete the data forms was considered important. It was agreed that SS/WP4 should review more of the data forms in order to determine whether the data format from ATTC is suitable for SS/ WP4 needs. We must also wait for further development of the output definition before attempting to describe a data reduction procedure. We suggest to ATTC that, to the extent NTSC is tested, such tests be documented using the standard data forms as an aid to evaluation of these forms and comparisons between the NTSC and the ATV systems. ### 7.0 Other Business A letter (SS/WP4-0041) from Mr. Larry Goldberg of The Caption Center to Mr. Wiley regarding closed captioning was distributed. ## 8.0 Next Meeting Dr. Hopkins will advise the members of location and time of the next meeting which is expected to be held early in 1991. Dr. Hopkins adjourned the meeting at 3:00 pm. Page 6 of 11 ## II. List of Attendees | Name | Organization | Telephone | Fax | |-------------------------------|------------------------------|--------------|--------------| | | | | | | Mr. Virgil Conanan | HBO | 212-512-5309 | 212-512-5598 | | Mr. Joe Donahue | Thompson | 202-872-0670 | 202-872-0674 | | Mr. James G. Ennis | Fletcher Heald &
Hildreth | 202-828-5700 | 202-828-5786 | | Mr. Bruce Franca | FCC | 202-632-7060 | | | Mr. Hugo Gaggioni | Sony | 201-833-5715 | 201-833-9455 | | Mr. James Gaspar | CBS | | | | Mr. Ronald Gnidziejko | NBC | 212-664-3153 | 212-581-6687 | | Dr. Robert Hopkins | ATSC | 202-828-3130 | 202-828-3131 | | Mr. Robert Hurst | DSRC | 609-486-5097 | 609-486-5226 | | Mr. Brian James | Cable Labs | 703-739-3870 | 202-739-5750 | | Mr. Robert Keeler | AT&T Bell Labs | 202-949-7982 | 201-949-5775 | | Mr. Thomas Keller | Consultant/Cable Labs | 203-567-3135 | | | Mr. Bernie Lechner | Consultant | | | | Mr. Bill Litzinger | Southwestern Bell | 314-529-7516 | 314-529-7573 | | Dr. Yun-Foo Lum | CRC | 613-990-4490 | 613-993-9950 | | Mr. Wayne Luplow | Zenith | 312-391-7873 | | | Ms. Marilyn
Mohrman-Gillis | Assoc. of Public B'casting | 202-887-1700 | | | Mr. William Nichols | CBS | 212-975-5646 | 212-975-1715 | | Mr. Shigeo Ogawa | Toshiba | 201-628-8000 | 201-628-1875 | | Mr. Detlev Otto | Philips Cons. Elec. | 615-521-4763 | 615-521-4728 | | Mr. Robert O'Connor | JBTI | 609-921-6574 | | | Ms. Loretta Polk | NCTA | 202-775-3664 | 202-775-3605 | | Mr. Gerald Robinson | Scientific Atlanta | 404-925-5835 | 404-925-6372 | # Minutes of the Eighth Meeting of SS/WP4, cont. 25 October 1990 Page 7 of 11 | Name | Organization | Telephone | Fax | |-----------------------|--------------|--------------|--------------| | Mr. William Schreiber | MIT | 617-253-2579 | | | Mr. Bruce Sidran | Bellcore | 201-758-4646 | 201-758-0199 | | Mr. Alan Stilwell | FCC | 202-653-8162 | 202-653-8773 | | Mr. William Zou | PBS | 703-739-5475 | 703-739-8938 | Page 8 of 11 ## III. Agenda - 1. Approve Agenda - 2. Consideration of minutes of the seventh meeting. - 3. Report from the Working Party on Spectrum Utilization and Alternatives (PS/WP3). - 4. Report from the Task Force on the Recommendation Method. - 5. Report from the Task Force on Report Drafting. - 6. Report from the Task Force on Data Format. - 7. Other business. - 8. Adjournment ## IV. Summary of Open Action Items | Assigned | Action Expected | |--------------|---| | Mr. Sidran | Prepare a data flow diagram and schedule. | | | Proceed to have Task Force write individual section outlines in more detail. Begin writing Section 7. | | Mr. Gaggioni | Work with ATTC to complete data forms. | Page 9 of 11 #### V. List of Documents distributed at the Meeting | SS/WP4-0029 | Outline of Final Report (revised 19 Oct. 1990) | |-------------|--| | SS/WP4-0032 | Project Schedule (unofficial draft) | | SS/WP4-0038 | Letter from Mr. Bruce Sidran to Dr. Hopkins | | SS/WP4-0039 | Status report from the Task Force on Data Format | | SS/WP4-0040 | Status report from the Task Force on the Recommendation Method | | SS/WP4-0041 | Letter from Mr. Larry Goldberg to Mr. Richard Wiley | | SS/WP4-0042 | Letters from Mr. Irwin Dorros to Mr. Richard Wiley, from Mr. Wiley to Mr. Dorros, and from Mr. Jerry Pearlman to Mr. Wiley | | SS/WP4-0043 | Letter from Mr. Richard Wiley to Dr. Hopkins | | SS/WP4-0044 | Letter from Mr. George Theus to Dr. Hopkins | | SS/WP4-0045 | Letter from Mr. Dale Hatfield to Dr. Hopkins with PS/WP3 statement on spectrum criteria attached. | #### VI. Historical List of Points of Agreement by the Members: - 25 Oct 1990 The information and form proposed by the Planning Subcommittee/Working Party 3 in the document PS/WP3-0140 (SS/WP4-0045) seems to be acceptable for use by Systems Subcommittee/Working Party 4. However, some future additions may be requested by SS/WP4. - 14 Jun 1990 The membership chooses not to engage a consultant for Value Engineering analysis at the present time. The option will remain on the table. - 14 Jun 1990 A Task Force on the Recommendation Method will be formed with the charter to propose a recommendation procedure to the working party for use in selecting the recommended system. The chair will appoint a task force chairman. [Mr. Ron Gnidziejko subsequently appointed.] Page 10 of 11 - 14 Jun 1990 SS/WP4 will make every effort to meet the FCC scheduled deadline of September 30, 1992 for the final report. The report may reflect work remaining such as field testing. - 14 Jun 1990 SS/WP4 is prepared to accept the task of certification for field testing and requests authority for such certification from the Systems Subcommittee. - 19 Apr 1990 Two new Task Forces will be formed. The Task Force on Data Format will be Chaired by Mr. Gaggioni. The Task Force on Report Drafting will be Chaired by Mr. Sidran. - 12 Jul 1989 SS/WP4 will send document SS/WP4-0019, <u>ATV System Models</u>, to the Systems Subcommittee, the ATSC and the EIA. The following text is contained in that document: SS/WP4 reaffirms its recognition of the importance of interoperability between alternative media and terrestrial broadcast standards, and the desirability for consumer ATV receivers to accommodate alternative media inputs. SS/WP4 encourages the ATSC and the EIA to develop specifications for an appropriate interface that could lead to a voluntary industry standard The input documents on ATV System Models will be forwarded to both the EIA and the ATSC. Figure 1 of document SS/WP4-0019 (also see document SS/WP4-0018) can serve as an ATV systems model. Figure 2 of document SS/WP4-0019 (see also document SS/WP4-0016) can serve as a model for an ATV receiver. SS/WP4 will maintain liaison with the EIA and the ATSC on an ongoing regular basis. - 11 Apr 1989 SS/WP4 intends to make recommendations based only on consensus. Determination of consensus will be left to the officers. For consensus to exist there must be substantial agreement among the members of the Working Party, and general agreement that consensus exists. If consensus does not exist, but there is a large body of opinion, it will be reported along with any minority opinions. - 11 Apr 1989 The primary intention of SS/WP4 is to make a recommendation for the terrestrial broadcast of ATV. Page 11 of 11 - 11 Apr 1989 SS/WP4 does not anticipate making recommendations for transmission of ATV on alternative media, but does anticipate other organizations will do so. SS/WP4 will consider inputs from other organizations in its deliberations. - 11 Apr 1989 The primary intention of SS/WP4 is to recommend a single standard for the terrestrial transmission of ATV. - 11 Apr 1989 Whatever system is recommended for terrestrial broadcast must be capable of being carried by cable systems as well. - 11 Apr 1989 SS/WP4 recognizes the importance of inter-operability between alternative media and terrestrial broadcast standards, and the desirability for consumer ATV receivers to accommodate alternative media inputs. However, it does not anticipate making recommendations in these areas, but does anticipate other organizations doing so. SS/WP4 will consider inputs from other organizations in its deliberations. - 11 Apr 1989 SS/WP4 will not document a standard in the manner of SMPTE or EIA, rather its role is to recommend a standard documented by others. - 17 Jan 1989 The Charter was amended to read: "The Working Party on System Standards shall recommend standards for the transmission of ATV based upon information supplied by any and all other Working Parties in the Advisory Committee." - 17 Jan 1989 If it is deemed to be appropriate as part of the decision process to assign weights (or levels of importance) to various findings of the other Working Parties, SS/WP4 alone shall do so. # Information Flow # In the Advisory Committee SS/WP4-0049 22 Jan 1991 The Task Force on Report Drafting has suggested (in its outline for the final report) that the data available to WP4 be bundled into four broad categories for analysis. The four are: policy and regulatory issues, spectrum utilization issues, economic issues and technology considerations. This appears to be a complete set, meaning that all the planned data can be fit into one of those categories. A careful examination will reveal that a decision method is implied in the outline. In fact, the outline was created with this in mind. The key to this method is a very simple observation: the data can be linearly decomposed along orthogonal axes. Results along each axis can be analyzed independently and recombined, because the axes are
orthogonal. In theory, the decomposition can be done in an arbitrary number of successively finer steps, as many as necessary to reach a conclusion. In practice, two or three will probably be enough. The concept is actually a lot simpler than the words used to describe it. Perhaps an example will help illustrate the point. Recall that Chapter 7, Selection Criteria, is intended to be the yardstick against which we will measure the performance of the actual systems. The four main sections of Chapter 7 can form a "decision tree". If the members of the Working Party can agree that the four categories are in the proper order we are well on our way. (This approach will work equally well for any finite number of categories in any specific order.) Once the systems are analyzed for "policy and regulatory issues", "spectrum utilization", "economics" and "technology", the "best" system can be determined because we've already decided that spectrum utilization is more important (to the FCC) than the specific technology used. But how to decide which system makes the "best" use of the spectrum? The next level of detail (which has yet to be written) will help. We must decide that some measures (hopefully a small number) are absolutely critical. Appropriate experts will help write this section, but I can imagine it might contain items such as coverage area, station "reach", percentage of stations accomodated, minimum antenna spacing, and required D/U. The measure of "importance", discussed earlier, will help us decide the proper order for the items. The candidate systems will then be compared on those items, and the "best" system or technology selected for spectrum use. That candidate is then compared to the other systems selected in the other categories, and eventually, an informed recommendation can be made. If the members of WP4 accept this approach, the fourth interim report presents a unique opportunity to circulate the concept more widely for comment. Best regards, B. P. Sidran Pauce Chair, Task Force on Report Drafting | PLANNING | FACTORS | UNITS | | LS 2-6 | | | CHANNELS 14- | |-----------------|----------------|---------|------|-------------|-------------------------------|--------------------|------------------------------| | | | 1 . | 1000 | IIIIII | | IIAIII | | | 1. Hgt. above | avg. terrain | feet | 1000 | 1 | - | | | | 2. Geometric | mean freq. | MHz | 69 | 1 | | | | | 3. Power | | dBk | 20 | 1 | | | | | 4. Thermal no | ise | dB/uV | 7 | I'N | SC ILL | USTRATI | VE EXAMPLE | | 5. Receiver n | oise figure | dB | 12 | | | | | | 6. S/N ratio | (ref. to car.) | dB | 30 | Grade | 3 conto | our Chs. | 2-6 47dBuV/n | | 7. Line loss | | dB | / | | | | | | 8. Rec. anten | na gain | dB | 6 | | | | ed service,
re service is | | 9. Dipole fac | tor | dB | 3 | availal | ole at | least 9 | 0% of the | | 10. Location P | rob.(L) | • | 50 | time, a | at the | best 50 | * of location | | 11, Local fiel | | dBuV/m | NA | Service | cates | orized | by the | | 12. Location P | rob. factor | 98 | 0 | median | observ | er-back
bassabl | in the '50s-
e" quality, | | 13. F(50,90) f | ield | dBuV/m | NA | impaire | ement (| "snow") | is noticeab | | 14. Time proba | bility | | 90 | but not | objec | tionabl | e | | 15, Time prob. | factor | dB | 6 | Effect | of coc | hannel | interference | | 16. F(50,50) f | ield | dBuV/m | 47 | manal ! | ' | | caused by | | 17. To overcom | e urban noise | dB | NA | | | | es away | | 18. To overcom | e rural noise | dB | NC | | | | area caused | | 19. Atmospheri | c noise | dB | NC | | | | miles away K | | 20) Required m | edian field | dBuV/m | (47) | | _ | | _ | | 21. Rec. ant. | discrimination | dB | NC | | | | | | 22. Cross pol. | factor | dB | NC | | $\langle \mathcal{N} \rangle$ | | | | 23.(Coch. D/U | a. ATV-NTSC | đĐ | 45 | | X | | | | (no offset | b. NTSC-ATV | dB | | | 7 | | \ | | NIZC-NIZC | O. ATV-ATV | dB | | XX | • | | | | 24.(Coch. D/U | a. ATV-NTSC | dB | 28 | KN | | | | | (((nominal | b. NTSE-ATV | ďВ | | | | 0 | | | (offset | C ATV-ATV | dB | | K/X | | | | | 25.(Coch. D/U | a. ATV-NPSC | dB | NC | XX | | | / | | (precise | b. NZSC-ATV | dB | | WI | | • | / | | (offset | ATV-ATV | dB | | 1/ | 1 | | | | 26.(Adjch: D/U | | dB | 0 | | | | | | ' (Lower | b. NPSC-ATV | đВ | | | 17, | | / | | | C. ATV-ATV | dB | | | | -, | : :::LES | | 27. (Adjch. D/U | a. ATV-NISC | dВ | 0 | | 20 30 | EO 50 60 | 70 FO 90 100 110 | | " (Upper | b. NTSC-ATV | dB | | ilitida (| i- i | I T T | 1 1 1 1 1 1 | | | c. ATV-ATV | dB | | | | , <u>.</u> | | | 28. Taboos | | | 1111 | 1111 | 1111 | VIII | SEPERATE LIS | | NA not appli | able : NC not | conside | red | | romente | d Grerze | e for Zone I | | | | | | • | · class | | - * * * | 16 January 1991 Dr. Robert Hopkins Chair, \$S/WP4 ATSC 1776 K Street, NW Washington, DC 20006 #### Dear Bob: The critical issue of how WP4 will select an ATV system has been debated in both WP4 and the Task Force on the Recommendation Method. The result of those extensive discussions was the same: consensus is the only method on which there is consensus. While philosophically satisfying, that result is insufficient unto itself to guide our actions. This letter presents some further thoughts for consideration of the members and discussion at your next meeting. Let me digress for a moment to comment briefly on a general structure for the Advisory Committee's work. It appears that at least three different types of documents, containing three different levels of data, will be needed. First, the laboratory reports, written by the ATTC, Cable Labs and the CRC, and delivered to SS/WP2 as the body responsible for test administration. These reports will contain the voluminous "raw" data. Second, Working Party reports written as contributions to the WP4 report (including somewhat reduced summaries of the data), and third, the WP4 final report (the executive summary). This scenario suggests that all the test data will be delivered to SS/WP2 as the single point of contact for the Advisory Committee. WP2 will then be responsible for distributing the information to other bodies in the Advisory Committee, including SS/WP4, as necessary. Since WP2 will have first access to the "raw" data, it seems logical for them to do most of the first level of data reduction (except for the items to be done by PS/WP3), under the guidance of WP4. The outline for their report, including instructions from the Task Force on Data Format, will provide that guidance. At this point, only one of the documents, the SS/WP4 final report, has been started. The Task Force on Report Drafting is responsible for both the WP4 final report, and for outlines of the Working Party reports. I suggest that SS/WP2 should create outlines for the three laboratory reports, based upon the Test Management Plan, the Test Procedures Plans, and the outline we supply to them. As for the substantive work of WP4, analysis of the systems will be simplified if we notice that only differences make a difference. If, for example, it turns out that the cost to realize all the candidate systems in hardware is approximately the same, that issue becomes moot. The information will be documented in the final report, but it needn't be part of the selection process. Our first job will be to determine (based upon the test data and analyses available from other Working Parties) which items are similar between systems, and which are different. It seems intuitively correct that items which are "very" different are more significant than items which are "a little bit different". We should then create a metric of "importance" based on how much a value varies from system to system. This notion of "importance" is very different than the a priori weighting of attributes, to which many people have objected, because the ordering is done as part of the analysis process, after all the data is collected. JONY DRAFT Sony Advanced Systems Business and Professional Group 3 Paragon Drive Montvale, New Jersey 07645 Telephone (201) 930-1000 > SS/WP4-0050 Jan. 25 1991 # FCC ADVISORY COMMITTEE ON ADVANCED TELEVISION SERVICE SYSTEMS SUBCOMMITTEE WORKING PARTY ON SYSTEMS STANDARDS (SS/WP4) STATUS REPORT OF THE TASK FORCE ON DATA FORMAT The Task Force on Data Format met on January 23, 1991 at NBC, New York City to evaluate the information supplied by the ATTC for use in the ATV testing program and the subsequent presentation of test results. The enclosed draft "ATTC Test and Data Matrix" is intended as a quick reference to various aspects of the ATV testing program, in particular the cross-reference of ATTC tests to the approved ATV test procedures, signals to be used, and type of results expected of the individual tests. The Task Force on Data Format endorses this work as it represents a valuable tool for the coordination of test resources during the implementation phase of the ATV testing program. The Task Force on Data Format has recently received information relating to the collection and presentation of test results from the following organizations (information enclosed): - Cable Labs - Advanced Television Evaluation Laboratory (Communications Research Center) At this time the Group has not been able to complete the study of said information. A report with possible recommendations is expected to be produced in time for the next meeting of the Task Force. The members of the Task Force on Data Format look forward to collaborating with the ATTC in the future preparation of "generic data sheets" for the collection and presentation of the test data. The next meeting of the Task Force will be held during the month of March (date and place to be determined) in New York City. Hugo Gaggioni Manager High Definition Video Systems Sony Advanced Systems # ADVANCED TELEVISION TEST CENTER, INC. 1330 BRADDOCK PLACE SUITE 200 ALEXANDRIA. VIRGINIA 22314-1650 703/739-3850 FAX 703/739-3230 January 7, 1991 Hugo Gaggioni Chairman, SS/WP-4 Task Force on Data c/o Sony Advanced
Systems 3 Paragon Drive M.D. 2N70 Montvale, New Jersey 07645-1735 ### Dear Hugo: The Test Center has prepared a summary of certain important aspects of the ATV testing program defined in the approved test procedures. The enclosed draft "ATTC Test & Data Matrix" may be used as a quick reference for the following areas: - Identification of all ATV system tests to be undertaken at ATTC with cross-reference to approved test procedure documents; - Signals to be used in tests, as specified in test procedures or by PS/WP-6; - Expected results. The summary covers objective tests, including tests to be jointly conducted by ATTC and CableLabs. It also includes those subjective tests to be conducted with expert observers. Preparation of tapes for subjective viewing tests with non-expert viewers and audio listening tests is shown, but the tests will be not conducted, nor will data be prepared, by ATTC. Specifically, the summary does not include cable-only results to be taken by CableLabs nor does it include results of the subjective testing to be done by the Advanced Television Evaluation Laboratory (Canada). It is important to note that this summary does not include system-specific tests. The Test Center has, at the request of SS/WP-2, reserved one (1) day for such tests, but the attributes to be tested and the procedures and test signals to be used in testing will be developed by SS/WP-2 only after the final technical analysis and certification have been completed by SS/WP-1 60 days prior to start of testing of the specific system. It should also be noted that much of the development of the approved procedures and test signals, reflected in the enclosed document, was done before the comparatively recent announcement of all-digital systems. Even at present, little technical information is available about such systems. As information becomes available and analyses are performed, the effort devoted to system specific tests may take on greater significance. Information in the matrix is taken from the documents cited on the cover sheet. Considered together with the different types of expected results, as described in my earlier letter (October 19, 1990), these represent an overview of the ATV system data to be gathered at ATTC during the coming laboratory tests. If you have any questions about an item, first check the source document to determine if the matrix conforms. Please review the matrix and let me have your comments by January 25, 1991. Sincerely, E. B. Crutchfield Program Officer Encl. cc: Irwin Dorros Robert Hopkins Mark Richer Joseph Flaherty Alex Felker Charles Rhodes ATTC Technical Committee "(E)" indicates that a test is applicable only to Enhanced NTSC systems. # Objective Test Procedures, Sect. 1, 2: Image Resolution, System Performance (Sect. 2. System Performance Verification: Procedures used to detect any changes in system under test, no other use of data.) | Time | | | | Resource Utilization | | | | | Test Signals | | Ė | | | | |----------------------|---|-------------|-------|----------------------|------------|-------|---------|---------|---|---|-------|-------------------------------------|---------|---| | Line
Cross Ref. | TEST ID | TYPE | PEXAR | RFTB | HDD
VIR | D2VTR | Experts | Display | S=still, M≃motion seq
T=test pattern | Numerical
Taken/Resource | Graph | Photo | Tape | Notes | | XV.1
XVI.5 | 1.3.1 Luminance
Static Horiz.
Res. ATV | EO&C
Obj | | | 1 | | 5 | | T11 (zone plate) | Lim. H res. 5/1 x3(E)
Half-ampl. H res.
1 x3(E) | | Pic mon
Wvím mon | Archive | Repeat for side panels
if applicable. (B)
Also log ZPG settings | | XV.1 | 1.3.2 Luminance
Static Vert. Res
ATV. | EO&C | | 1 | 1 | | 5 | | T11 (zone plate) | Lim. V res.
5/1 x3(E) | | Pic mon | Archive | Repeat for side panels
if applicable. (E)
Also log ZPG settings | | XV.i | 1.3.3 Luminance
Static Diag. Res.
ATV | EO&C | | | 1 | | 5 | | TH (zone plate) | Lim. Diag. res.
5/1 x3(E) | | Pic mon | Archive | Repeat for side panels
if applicable. (E)
Also log ZPG settings | | XV(E).1
XVI(E).5 | 1.3.4 Luminance
Static Horiz. Res.
NTSC Revr (E) | EO&C
Obj | | | | 1 | 5 | | T11 (zone plate) | Lim. II res. 5/1 (E)
Half-ampl. II res.
I (E) | | Pic mon
Wvfm mon | Archive | Also log ZPG settings | | XV(E).1 | 1.3.5 Luminance
Static Vert. Res.
NTSC Revr (E) | EO&C | | | | 1 | 5 | | T11 (zone plate) | Lim. V res.
5/1 (E) | | Pic mon | Archive | Also log ZPG settings. | | XV(E).1 | 1.3.6 Luminance
Static Diag. Res.
NTSC Revr (E) | EO&C | | | | , | 5 | | Til (zone plate) | Lim. Diag. res.
5/1 (E) | | Pic mon | Archive | Also log ZPO settings | | XV I
XVI.4a | 1.3.7 Luminance Dynamic Horiz. Res. ATV | EO&C | | | 1 | | 5 | | T11 (zone plate,
moving) | Lim. H res.20/4 x3(E)
Half-ampt. H res.
4 x3(E) | | Pic mon
Wvfm mon
(Gate 1 fr.) | Archive | Repeat for side panels
if applicable. (E)
Also log ZPG settings | | XV.1 | 1.3.8 Luminance
Dynamic Vert,
Res ATV. | EO&C | | | 1 | | 5 | | T11 (zone plate,
moving) | Lim. V res.
20/4 x3(E) | | Pic mon
(Gate 1 fr.) | Archive | Repeat for side panels
if applicable. (E)
Also log ZPG settings | | XV.1 | 1.3.9 Luminance
Dynamic Diag. Res.
ATV | EO&C | | | 1 | | 5 | | T11 (zone plate,
moving) | Lim. Diag. res.
20/4 x3(E) | | Pic mon
(Gate 1 fr.) | Archive | Repeat for side panels
if applicable. (B)
Also log ZPG settings | | XV(E).1
XVI(E).4a | 1.3.10 Luminance Dynamic Horiz. Res NTSC Revr (E) | EOAC
Obj | | | | 1 | 5 | | T11 (zone plate,
moving) | Lim. H res. 20/4
Half-ampt. H res 4 | | Pic mon
Wvfm mon
(Gate 1 fr.) | Archive | Also log ZPG settings | | XV(E).1 | 1.3.11 Luminance
Dynamic Vert. Res.
NTSC Revr (E) | EOAC | | - | | ı | 5 | | TII (zone plate, moving) | Lim. V res. | | Pic mon (Gate 1 fr.) | Archive | Also log ZPG settings | | XV(E).1 | 1.3.12 Luminance
Dynamic Diag, Res.
NTSC Revr (E) | EO&C | | | | , | 5 | | T11 (zone plate, moving) | Lim. Diag. res.
20/4 | | Pic mon (Gate 1 fr.) | Archive | Also log ZPG setting: | | XV.2 | 1.3.13 Dynamic Res.
Camera-generated
Signal | EOAC | | | 1 | | 5 | ıs | M21, M22, M23
M24, M25 M26 | (Experi comment only) | | | needed) | Experts look for, document temporal artifacts. | RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. Display: 24=24 NTSC Revrs; LS=1.arge Scrn NTSC; ATV=Hitachi (E): applies to Enhanced NTSC systems, only Page 2 of 9 1/4/91 # (SIMULCAST & E-NTSC) ATTC Test & Data Matrix Objective Test Procedures, Sect. 3-5, Transient Response; Chromaticity/Colorimetry Characteristics; VCR Compatibility | Time | - 1 | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | Nata | |--------------------|--|-------------|-------|------|--------|-------------|---------|---------|---|--|---------|--|------------------------------|---| | Line
Cross Ref. | TEST ID | TYPE | PEXAR | RFTD | HDD | D2VTR | Esperts | Display | S-still, M-motion seq
T-test pattern | Numerical
Taken/Reparted | Graph | Photo | Tape | Notes | | XVJ.1b | 3.3.1.2.1. Lumin. Resp.
to Stationary Step:
Horiz, Resp. | Obj
Meas | ~ | , | 1 | 1(E) | | | T10 (static windows) | Risetime; Ringing:
period, ampl; Ovrsht:
ampl, time; Undrsht:
ampl, time: 72/72 x2(E) | | Wvfm: 8
x2(E) | Archive
HD, D2(E) | Data normalized to pic. | | XVI.1b | 3.3.1.2.2. Lumin. Resp.
to Stationary Step:
Vert. Resp. | Obj
Meas | > | | 1 | 1(E). | | | T10 (static windows) | Transient ampl,
line no.
727/72 x2(E) | | Wvfm: 8
x2(l:) | Archive
HD, D2(E) | Measure transient
ampls, if any, at top
& bottom of pic.
Data normalized to, pic. | | XVI.1b | 3.3.2.2.1. Lumin. Resp
to Moving Step:
Horiz. Resp. | Obj
Meas | > | | 1 | 1(1:) | | | T10 (moving windows
@3 H rates) | Risetime; Ringing:
period, ampl, Ovish:
ampl, time; Undsh: ampl,
time 216/216 x2(E) | | Pic:
24 ATV +
24 NTSC(E) | Archive
HD, D2(F) | Data normalized to pic | | XVI.1b | 3.3.2.2.2. Lumin. Resp
to Moving Step:
Vert. Resp. | Obj
Meas | > | | 1 | 1(1:) | | | TI() (moving windows
@3 V rates) | Risetime; Ringing:
period, ampt; Ovrsh:
ampl, time; Undsh: ampl,
time: 216?/216 x2(E) | | Pic:
24 ATV +
24 NTSC(E) | Archive
HD, D2(E) | Data normalized to pic. | | XVI.2b
XVI.3a | 3.3.3.2.1. Chrom.
Resp. to Stationary
Step: Horiz. Resp. | Obj
Meas | > | | 1 | 1(E) | | | T10 (static windows) | Risetime; Ringing:
period, ampl;Ovrsh:
ampl, time;Undsh: ampl,
time: 144/144 x2(E) | | Wvfm 16
x2(E) | Archive
HD, D2(E) | Measure transient
ampls, if any, at top
& bottom of pic, R&B
Data normalized to pic. | | XVI.2b
XVI.3a | 3.3.3.2.2. Chrom.
Resp. to Stationary
Step: Vert. Resp. | Obj
Meas | ~ | •- | ١ | 1(E) | | | T10 (static windows) | Transient ampl,
line no
144?/144 x2(E) | | Wvfm: 16
x2(E) | Archive
HD, D2(E) | Measure both R & B channels. Data normalized to pic. | | XVI.2b
XVI.3a | 3.3.4.2.1. Chrom.
Resp. to Moving Step:
Horiz, Resp. | Obj
Meas | ~ | | , | 1(E) | | | T10 (moving windows @3 H rates) | Risetime; Ring: period,
ampl;Ovrsht: ampl,
time;Undrsht: ampl,
time: 432/432 x2(E) | | Pic:
48 ATV
48 NTSC(E) | Archive
HD, D2(E) | Measure both color
component channels. Data normalized to pic. | | XVI.2b
XVI.3a | 3.3.4.2.2. Chrom.
Resp. to Moving Step:
Vert. Resp. | Ohj
Meas | ~ | | 1 | 1(E) | | | T10 (moving windows
@3 V rates) | Risetime; Ring: period,
ampl;Ovrsht: ampl,
time;Undrsht: ampl,
time: 4327/432 x2(E) | | Pic:
48 ATV
48 NTSC(E) | Archive
IID, D2(E) | Measure both color component channels. Data normalized to pic. | | XVI.1b | 3.3.5. Luminance
Temporal Response | Obj
Meas | ~ | | 1 | 1(E) | | | T10G (static windows, gated) T5G (radial res., gated) | (Photos, unly) | | Pic &
Wvfm:
16 ATV +
16 NTSC(F) | Archive
HD, D2(E) | Photo sets of both test patterns. | | XVI.2b
XVI.3a | 3.3.6, Chrominance
Temporal Response | Obj
Meas | ~ | | 1 | 1(E) | | | T10G (static windows, gated) T5G (radial res., gated) | (Photos, only) | | Pic &
Wvfm:
32 ATV +
32 NTSC(E | Archive
HD, D2(E) | Photo sets of both test
patterns, for R & B
channels | | XVI(E).6 | 4.3.1. Color Difference Compatibility (E) | Obj
Meas | ~ | | - | I(E) | | | T7 (color bars) | Vector ampl, phase
differences.
10/10 (E) | | Wvfm: 4
Vector-
scope: 4 | Archive
D2 | Compare vector (ref G) ampls, phases with 1 dB input change, phase before & after. | | XVI.2a | 4.3.2. Chrominance
Component Dynamic
Range | Obj
Meas | ~ | | | | | | T4 (line-rate ramp) | Input attn to elim. any nonlinearity, 3/3 | | Wvfm: 6 | Archive
HD | Observe nonlinearity in rump intro'd by system, photo both conditions. | | XX. | 5. VCR
Compatibility for
Enhanced NTSC (E) | EO&C | | | I(E) | 1(E) | 5 | LS | 5 min. video & audio
material | (Comment, only) | | | 8 NTSC
video
cassettes | Output is written expert
commentary on diff
between ENTSC &
NTSC receings on VCRs | RF Test Bed is used in all tests but is checked only where—Display: 24=24 NTSC Revrs; LS=Large Sem NTSC; ATV=Hitachi it is used to introduce impairment or interference. (E) = applies to Enhanced NTSC systems, only. "x2(E)" = double number for Enhanced NTSC system ## Objective Test Procedures, Sect. 6-12: Tx Spectrum, Degrad. to BTSC Audio, Audio | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | | |---------------------------|--|-------------|-------|----------|------------|---------|---------|-----------------------|--|--|--|---------------------------------|------|--| | Line
Cross Ref. | TEST ID | TYPE | PLXAR | RFTB | HDD
YTR | D2YTR | Experts | Display | S-still, M-motion seq
T-test pattern | Numerical
Taken/Reported | Graph | Phote | Tape | Notes | | XVI.1a | 6. Transmitted Spectrum | Obj
Meas | ~ | ~ | | | | | T8 (matrix pattern)
Audio material?
Pseudorandom data | | | Spectrum
analyzer
display | | Spectrum used by
ATV system with
all channels fully
loaded. | | XVIII.3a,
3b,3c,
3d | 7.1.1.2 Degradation to
BTSC Audio
ATV -> NTSC | Obj
Meas | ~ | ~ | | | | 6-10
BTSC
Rcvrs | 8 kHz tone; 20-15,000
sweep; audio program
material; D: T8 (matrix)
U: T8G (matrix gated) | THD+N@ coch., upper
adj, lin & non-lin taboo
calibr.
LR sep. 47/4 | Plot spectral
distr 20Hz
15kHz left
output 1 | | | THD+N from left
channel of all
pairs. | | XIX.I | 7.2. Degradation of
Ancillary VBI Services
ATV -> NTSC | Obj
Meas | > | ~ | | | | | D: T1 (flat field) U: T8G (matrix, gated) | RMS noise on lines
12, 21 cochnl | Plot spectral
distr of signal
comps lines
12, 21. | •• | | Cochannel D=-55
U= 6 levels | | XIX.2 | 7.2. Degradation of
Ancillary VBI Services
ATV (E) | Obj
Meas | ~ | ~ | | | | | T8 (mainz) | RMS noise on lines
12, 21
2/2 | Plot spectral
distr of signal
comps lines
12, 21. | | | | | | 8. Audio, General
Considerations | | | | | | | | ons for the following section 8. | ons | | | | | | XVIII.ir | 9. E-NTSC Audio
Signal-to-Noise (E) | Obj
Meas | | | | | | | 1 kHz audio tone
T7 (NTSC color bars) | S/N unweighted
S/N weighted
4/4 (E) | Plot broad-
band noise
spectrum. | | | BTSC main sudio
channels, only.
(E) | | XVIII.1a | 10. Dynamic Range | Obj
Meas | | | | | | | i kiiz audio tone | THD+N -70ldB
 4/4 | | | | All audio channels.
(Assume 4) | | хушль | 11.1.3 ATV Non-
linear Distortion
THD+N | Obj
Meas | | | | | | | 20 - 20,000 Hz audio
sweep | | THD+N vs
freq. | | | All audio channels
(Assume 4) | | хушль | 11.1.5 ATV Non-
linear Distortion
THD | Obj
Meas | | - | | | | | 8 frequencies or
20 - 20,000 Hz audio
sweep | Harmonic amplitudes
64/64 | | | | All audio channels
(Assume 4) | | XVIII.1b | 11.2.4 ATV Non-
linear Distortion
IMD | Obj
Meas | | | ļ | | | | 60 Hz audio tone
7 kHz audio tone | - | IMD vs
input level
20 | | | All audio channels.
(Assume 4) | | XVIII.16 | 11.2.5 ATV Non-
linear Distortion
DIM | Obj
Meas | | | | | | | 400 Hz audio tone
750 Hz audio tone
2.4 Khz audio tone | | DIM vs
input level
20 | | | All audio channels.
(Assume 4) | | XVIII.1g | 12. Audio/Video
Delay
ATV | Obj
Meas | | | | | | | T2G (ATV flat field, gated) I k Hz audio tone, gated | Delay: video vs audio,
off-on and on-off.
8/8 | | | | All audio channels.
(Assume 4) | | XVIII.1g | 12. Audio/Video
Delay
E-NTSC (E) | Obj
Mean | | | - | | - | | TIG (NTSC flat field,
gated)
i kHz audio tone,
gated | Delay: video vs audio,
off-on and on-off.
4/4 | | | | 2 BTSC channels | RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. Display: 24=24 N ISC Revrs; LS=Large Scm NTSC; A I V=Hitachi it is used to introduce impairment or interference. (E) = applies to Enhanced NTSC systems, only. "x2(E)" = double number for Enhanced NTSC system # ATTC Test & Data Matrix Objective Test Procedures, Sect. 13-18 Page 4 of 9 1/4/91 | Time | | | | Re | source | Utiliza | tion | | Test Signals | | | | | | |----------------------|--|-------------|-------|----------|------------|---------|---------|---------|--|---|-------------------------------------|---------------|-------------------|--| | Line
Cross Ref. | TEST ID | TYPE | PEXAR | RFTB | HDD
YTR | DZVTR | Experts | Display | Sestill, Memotion seq
Telest pattern | Numerical
Taken/Reparted | Oraph | Photo | Tape | Notes | | XVIII.1c | 13. Audio Frequency
Response | Obj
Meas | | | | | | | 20 20,000 audio
sweep @ 3 levels | | Audio out
level vs freq.
12 | - | | All audio channels.
(Assume 4) | | XVIII.1a | 14. Sine Wave Overload
vs Frequency | Obj
Meas | | | | | | | "series of frequencies" | | Plot overload
level vs freq
l | | | Overload point:
output drops .2 dB
rel. input. All chs.
(Assume 4) | | XVIII. Ih | 15. RF Bandwidth & RF Spectrum. | Obj
Meas | | | | | | | Audi o program
material
AF pink noise | 3 & 30 dB bandwidths,
(from photos)
6/6 | | Spectrum
3 | | Spectrum photos with
all audio che quiet &
loaded with noise &
music. | | XVIII.1e | 16. Stereo Interchannel
Amplitude & Phasing | Obj
Meas | | | | | | | 10+ frequencies
across band | Ampl. shift, phase shift
between channels of
stereo pairs:
40/40 | Plot ampl & phase shifts vs freq. 2 | v - | | Assume 2 stereo
pairs. | | XVIII I | 17, Noise Degradation of
Compatible NTSC Audio
(E) | EOA C | | v | | ,. | 5 | 24 | T7 (color bars)
Audio program
material | (Written commentary, only) | | | | Experts compare audio from NTSC mod. and E-NTSC system. | | XVIII.1i | 18. Confirmation of
Provisions for Ancillary
Data Signals. | Obj
Meas | | ~ | | | | | Pseudorandom data
TB7 (matrix)
? Hz audio tone | BER @ 6+ levels of
C/N.
18+/6+ | | | | | | | | | | | | | Audi | o Sut | Document SSWP2 0: | | | | | | | Day 36
Day 41 (E) | 1.2.1 Audio Quality
Rating Test | Rating | | | , | 1 (E) | | | A1 - A10 | | | | HD/DAT
Rating | Rating tests done off site. | | Day 35
Day 40 (E) | 1.2.2 Transmission
Impairment Test | EOAC | | ~ | ı | 1 (E) | | | A2, A3, A8 | (Comment only) | | | HD/DAT
Archive | Experts listen on headphones, write comments. | ## Objective Test Procedures, Sect. 19, Susceptibility to Interference, Other Impairments. | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | | |--------------------|--|----------|----------|-------------|------------|----------|----------|-----------|--|-----------------------------|---|-------------|----------------|--| | Line
Cross Ref. | TEST ID | TYPE | PIXAR | RFTB | HDD
YTR | D2VTR | Paperts | Display | S-still, M-motion seq
T-test pettern | Numerical
Taken/Reported | Graph | Photo | Тере | Notes | | XIV.1 | 19.3.1 Random Noise
->NTSC | ToV | ~ | > | | | 3 | 24 | D: T1(fint field, stat) | ToV
72/I | | | | | | хіу.іь | 19.3.1 Random Noise
->ATV | ToV | ~ | > | | | 5 | ATV | D: T3 (flat field, dyn) |
ToV
25/1 | | | | , | | XIV.Ic | 19.3.1 Random Noise
->ATV | Poli | > | ~ | | | 5 | ATV | D: 79 (text) | PoU
15/I | | ٠- | | | | XIV.1d | 19.3.1 Random Noise
->ATV | Range | ~ | ~ | | <u></u> | 5 | ATV | D: S5 (talips) or
S11 (woman w. roses) | Range levels
6+/6 | | | | "+" indicates
experts may look at
additional levels. | | XIV.ie | 19.3.1 Random Noise
->ATV | Rating | ~ | ~ | 2 | | | | D: S5 (salips), S11
(woman w roses),
M11 desk lamp | | | | 2 D2
Rating | Subj. rating to be done at CRC. | | XIV.4 | 19.3.2. Impulse
Noise
->ATV | τ₀ν
Δ | ~ | ~ | | | 5 | ATV
24 | D: T3 (flat field, dyn)/
T1 (flat field, stat) | ToV
50/1 | | | | "Threshold" is
difference between
ATV and NTSC | | XIV.2b | 19.4.3.2.1. Static
Multipath
->ATV | TeV | ~ | ~ | | | 5 | ATV | D: T9? (text) | ToV
300/12 | ToV vs +/-delay
(See Fig. 19-5.) | | | 12 delays | | XIV.2c | 19.4.3.2.1. Static
Multipath
->ATV | PoU | ~ | ~ | | | 5 | ATV | D: T9? (lext) | PoU
180/12 | Poll vs +/-delay
(See Fig. 19-5.) | | | Experts describe
failure. | | Х1V.3ь | 19.4.3.2.2. Flutter ->ATV | ToV | / | / | | | 5 | ATV | D: T97 (text) (Same as multipath) | 1/1 | | | | | | XIV.3c | 19.4.3.2.2. Flutter >ATV | PoU | ~ | ~ | 2 | 1 | 5 | ATV | D: T97 (text) (Same as multipath) | 1/1 | | | | Experts describe failure including rate and level. | | Sect | ions 19.5.3.2.1 (Cochanne | l), 19.5 | .3.2.2 (| Upper é | k Lowe | T Adjace | ent), an | d 19.5.3 | .2.3. (Tabuos) are listed | on separate sheets. | | | | | | XIII.13 | 19.5.3.2.4. Discrete
Frequency Interf.
->ATV | ToV | ~ | ~ | - | | 5 | ATV | D: T3 (flat field, dyn) | ToV
1250/graph | Carrier:beat
vs intrf freq;
(See Fig. 19-5) | RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. Display: 24=24 NTSC Revrs, LS=Large Scm NTSC; ATV=Hitachi ### Objective Test Procedures, Sect. 19, Susceptibility to Interference, Other Impairments, Quality | Time | | - | | Re | source | Utiliza | tion | - | Test Signals | | | | | | |--------------------|---|----------|-------|------|------------|---------|------|---------|---|-------------------------------|--|-------|------------|--| | Line
Cross Ref. | TEST ID | TYPE | PEXAR | RITB | HDD
VIR | DZVTR | | Display | S-still, Memorion seq
T-test pellers | Numerical
Takes/Reported | Results
Orașă | Photo | Tape | Notes | | XIV(E).1 | 19.3.1 Random Noise
->NTSC | ToV | > | ٧ | | | 3 | 24 | D: T1 (flat field, static) | To V 72/1 | - | : | <u>-</u> . | | | XIV(E).1b | 19.3.1 Random Noise
->ATV | ToV | > | > | | | 3 | 24 | D: T3 (flat field, dyn) | ToV
72/I | | | | , | | XIV(E).1c | 19.3.1 Random Noise
->ATV | PoU | ~ | > | | | 3 | 24 | D: T9 (text) | PoU 1/1 | | | | | | XIV(E).46 | 19.3.2. Impulse Noise
->ATV | τ•ν
Δ | ٧ | ۲ | | | 3 | 24 | D: T3 (flat field, dyn)/
T1 (flat field, static) | ToV 2/1 | | | | "Threshold" is
difference between
ATV and NTSC | | XIV(E).2b | 19 4,3.2.1. Static
Multipath
->ATV | ToV | > | ~ | | | 3 | 24 | (b T9? (text) | ToV
12/12 | ToV vr. +/-delay
(See Fig. 19-5.) | | | 12 delays | | XIV(E).2c | 19.4.3.2.1. Static
Multipath
->ATV | PoU | ~ | ~ | | | 3 | 24 | D: 19? (text) | PoU
12/12 | Pol J vs. +/-delay
(See Fig. 19-5.) | | | Experts describe
failure | | XIV(E).3b | 19.4.3.2.2. Flutter ->ATV | ToV | ~ | ~ | | | 3 | 24 | D: T9? (text) (Same as multipath) | 1/1 | | | | | | XIV(E).3c | 19.4.3.2.2. Flutter ->ATV | Poli | ~ | ~ | 2 | 1 | 3 | 24 | (Same as multipath) | 1/1 | | | | Experts describe failure including rate and level. | | | | | | | | | | Vide | eo Subjective Tes | st Procedures, S
swp2-0390 | Sect. 1 | | | | | Day 7 | Basic Received Quality
(Video Subj. Tests,
Sect 1.9 | Rating | | | , | 1 | | | S14, M1M10,
M16M20 | | | | 4D2 | Subj. rating to be done at CRC. | RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. Display: 24=24 NTSC Roves; LS=Large Som NTSC; ATV=Hitachi ## Objective Test Procedures, Sect. 19, Susceptibility to Interference, Cochannel Interference | Time | | | | Re | source | Utiliza | tion | | Test Signals | | Results | | | Notes | |--------------------|---|--------|-------|------|------------|---------|---------|---------|---|-----------------------------|---------|-------|----------------|--| | Line
Cross Ref. | TEST ID | TYPE | PIXAR | RFTB | HDD
YTR | D2VTR | Experts | Display | S-still, M-motion seq
T-test petern | Numerical
Tuben/Reported | Cruph | Photo | Тере | Notes | | I.A.1 | 19.5.3.2.1. Cochannel
Interference
NTSC->NTSC | ToV | > | ~ | | | 3 | 24 | D: TI (fint field, stat) U: T8 (matrix) | ToV
144/2 | | | | | | I.A.2.b | 19.5.3.2.1. Cochannel
Interference
ATV->NTSC | ToV | > | ~ | | | 3 | 24 | D: T1 (flat field, stat) U: T8G (matrix, gated) | ToV
288/4 | | | | Test at 2 freq.
offsets. | | 1.A.2.c | 19.5.3.2.1. Cochannel
Interference
ATV->NTSC | PoU | ٧ | ~ | | | 3 | 24 | D: T (text) U: T8G (matrix, gated) | PoU 2/2 | | | | | | 1.A.2.d | 19.5.3.2.1. Cochannel
Interference
ATV->NTSC | Range | ~ | ~ | | | 3 | ıs | D: S9 (girl w toys) or
S11 (wmn w roses)
U: T8G (matrix, gated) | Range levels
12+/12 | | | | "+" indicates
experts may look at
additional levels. | | I.A.2.e | 19.5.3.2.1. Cochannel
Interference
ATV->NTSC | Rating | ~ | ~ | , | 2 | | | D: S9 (girl w toys), \$11
(wmn w roses), M14
(cochnl)
U: M15 (primary) | | | | 4 D2
Rating | Subj. rating to be done at CRC. | | I.B.1.b | 19.5.3.2.1, Cochannel
Interference
NTSC->ATV | ToV | ~ | ~ | | | 5 | ATV | D: T3
U: T8 | ToV
100/4 | | | | Test at 2 freq.
offsets. | | 1.B.1.c | 19.5.3.2.1. Cochannel
Interference
NTSC->ATV | PoU | ~ | ~ | | | 5 | ATV | D: T9
U: T8 | PoU
30/2 | | | | | | f.B.1.d | 19.5.3.2.1. Cochannel
Interference
NTSC->ATV | Range | ~ | ~ | - | | 5 | ATV | D: S9 (girl w toys) or
S11 (wmm w roses)
U: T8 (matrix) | Range levels
12+/12 | | | | "+" indicates
experts may look at
additional levels. | | I.B.1.e | 19.5.3.2.1. Cochannel interference NTSC->ATV | Rating | ~ | ~ | 2 | 1 | | | D: S9, S11, M14
U: M15 | | | | 4 HD
Rating | Subj. rating to be done at CRC. | | 1.В.2.ь | 19.5.3.2.1. Cochannel
Interference
ATV->ATV | ToV | ~ | ~ | | | 5 | ATV | D&U: T8G\$ | ToV 50/2 | | | | | | 1.B.2.c | 19.5.3.2.1. Cochannel
Interference
ATV->ATV | PoU | ~ | ~ | | | 5 | ATV | D&U: 19 | PoU
30/2 | | | | | | 1.B.2.d | 19.5.3.2.1. Cochannel
Interference
ATV->ATV | Range | | ~ | - | | 5 | ATV | D&U: S9 or S11 | Range levels
12+/12 | | | | "+" indicates
experts may look at
additional levels. | | 1.B.2.e | 19.5.3.2.1. Cochannel
Interference
ATV->ATV | Ratin | . ~ | ~ | 2 | | | | D&U: S9, S11, M14 | | | | 4 HD
Rating | Subj. rating to be done at CRC. | RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. Display: 24=24 NTSC Revrs; LS=Large Scm NTSC; ATV=Hitachi DRAFT (SIMULCAST) ## ATTC Test & Data Matrix Page 8 of 9 1/4/91 # Objective Test Procedures, Sect. 19, Susceptibility to Interference, <u>Upper & Lower Adjacent Channel Interference</u> Note: Procedures and test signals are same for Upper and Lower adjacent channel tests. | Time | | | | Re | source | Utiliza | tion | | Test Signals | Results | | | | | |-------------------------|--|--------|-------------|----------|------------|---------|---------|----------|---|-----------------------------|-------|-------|------------------|--| | Line
Cross Ref. | | TYPE | PIXAR | RFTB | HDO
YTR | D2VTR | Experts | Display* | S-estill, Memotion seq
T-test pattern | Numerical
Telep/Reported | Graph | Photo | Tape | Notes | | 11.A.1.
111.A.1. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->NTSC | ToV | > | ~ | | | 3 | 24 | D: T1 (flat field, stat) U: T8 (matrix) | ToV
432/6 | | | | | | П.А.2.b.
Ш.А.2.b. | 19.5.3.2.2. Adjacent
Channel Interference
ATV->NTSC | ToV | > | ~ | | | 3 | 24 | D: T1 (flat field, stat) U: T8G (matrix, gated) | ToV
432/6 | | | | , | | II.A.2.c.
III.A.2.c. | 19.5.3.2.2. Adjacent
Channel Interference
ATV->NTSC | PoU | > | • | | | 3 | 24 | D: T (text) U: T8G (matrix, galed) | PoU
6/6 | | | | | | II.A.2.d.
III.A.2.d | 19.5.3.2.2. Adjacent
Channel Interference
ATV->NTSC | Range | > | ~ | | | 3 | ıs | D: S9 or S11
U: T8G | Range levels
36+/36 | | | | "+" indicates
experts may look at
additional levels. | | II.A.2.e.
III.A.2.e. | 19.5.3.2.2. Adjacent
Channel Interference
ATV->NTSC | Rating | > | ~ | ı | 2 | | | D: S9, S11, M14
U: M15 | | | | 12 D2
Rating | Subj. rating to be done at CRC. | | II.B.1.b.
III.B.1.b. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->ATV | ToV | ~ | ~ | | | 5 | ATV | D: T3
: U: T8 | ToV
150/6 | | | | | | II.B.1.c.
III.B.1.c. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->ATV | PoU | ~ | ~ | | | 5 | ATV | D: T9
U: T8 | PoU
90/6 | | | | | | li.B.1.d.
lil.B.1.d. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->ATV | Range | ~ | ~ | | | 5 | VIA | D: S9 or S11
U: T8 |
Range levels
36+/36 | ٠. | | | "+" indicates
experts may look at
additional levels. | | H.B.1.c.
HI.B.1.c. | 19.5.3.2.2. Adjacent
Channel Interference
NTSC->ATV | Ratin | ~ | ~ | 2 | 1 | | | D: S9, S11, M14
U: M15 | | | | 12 HD
Rating | Subj. rating to be
done at CRC. | | H.B.2.b.
HI.B.2.b | 19.5.3.2.2. Adjacent
Channel Interference
ATV->ATV | TeV | ~ | ~ | | | 5 | ATV | D&U: T8GS | ToV
150/6 | | | | | | II.B.2.c.
III.B.2.c | 19.5,3.2.2. Adjacent
Channel Interference
ATV->ATV | PeU | ~ | ~ | | | 5 | ATV | D&U: T9 | PoU
90/6 | · | | | | | 11.B.2.d.
111.B.2.d | 19.5.3.2.2. Adjacent
Channel Interference
ATV->ATV | Rang | ~ | ~ | | | 5 | ATV | D&U: S9 or S11 | Range levels
36+/36 | | | | "+" indicates
experts may look at
additional levels. | | II.B.2.e.
III.B.2.e | 19.5.3.2.2. Adjacent
Channel Interference
ATV->ATV | Ratin | - | ~ | 2 | | | | D&U: \$9,\$11,M14 | | | | 12 H D
Rating | Subj. rating to be done at CRC. | RF Test Bed is used in all tests but is checked only where it is used to introduce impairment or interference. Display: 24=24 NTSC Revrs; LS=Large Sern NTSC, ATV=Hitachi (SIMULCAST & E-NTSC) ## ATTC Test & Data Matrix Page 9 of 9 1/4/9 ### Objective Test Procedures, Sect. 19, Susceptibility to Interference, Taboo Channels (9) Interference, Quality | Time
Line
Cross Ref. | | | | Re | source | Utiliza | tion | | Test Signals Results | | | | | | |--|---|--------|-------|----------|------------|---------|---------|-----------|---|-------------------------------------|-------|-------|-----------------|--| | | TEST ID | TYPE | PIXAR | RFTB | HDD
YTR | DZVTR | Paperte | Draplay • | Sestiff, Memotion seq
Telest patters | Numerical
Tulor/Reserved | Graph | Photo | Таро | Notes | | n.A.1. | 19.5.3.2.3. Taboo
Channel Interference
NTSC->NTSC | TeV | > | ~ | | | 3 | 24 | D: T3 (flat field, stat) U: T8 (matrix) | ToV
1944/27
1800/25 (E) | | | - | | | n.A.2.b | 19.5.3.2.3. Taboo
Channel Interference
ATV->NTSC | ToV | > | > | | | 3 | 24 | D: T1 (flat field, stat) U: T8G (matrix, gated) | ToV
1944/27
1800/25 (E) | | | | , | | n.A.2.c | 19.5.3.2.3. Taboo
Channel Interference
ATV->NTSC | PoU | ~ | ~ | | | 3 | 24 | D: T (text) U: T8G (matrix, gated) | PoU
27/27
25/25 | | | 1 | | | n.A.2.d | 19.5.3.2.3. Taboo
Channel Interference
ATV->NTSC | Range | ~ | y | | | 3 | LS | D: \$9 or \$11
U: T8G | Range levels
162+/162
150/150 | | | | Numbers may be less if no interference is observed on some taboo charmels. | | n.A.2.e | 19.5.3.2.3. Taboo
Channel Interference
ATV->NTSC | Rating | ~ | ~ | 1 | 2 | | | D: \$9, \$11, M14
U: M15 | | | | 12 D2
Rating | Subj. rating to be done
at CRC. Rating tapes
made for 1 linear, 1
mon-linear taboo. | | n.B.2.b | 19.5.3.2.3. Taboo
Channel Interference
NTSC->ATV | ToV | ~ | ~ | | | 5 | ATV | D: T3
U: T8 | ToV
675/27
625/25 (E) | | | | | | n.B.2.c | 19.5.3.2.3. Taboo
Channel Interference
NTSC->ATV | PoU | ~ | ~ | | | 5 | ATV | D: T9
U: T8 | PoU
405/27
375/25 (E) | | | | | | n.B.2.d | 19.5.3.2.3. Taboo
Channel Interference
ATV->ATV | TeV | ~ | ~ | | | 5 | ATV | D&U: TBGS | ToV
675/27
625/25 (E) | | | | The state of s | | n.B.2.e | 19.5.3.2.3. Taboo
Channel Interference
ATV->ATV | Poli | ~ | ~ | | | 5 | ATV | D&U: T9 | PoU
405/27
375/25 (E) | | | | | | "m" = IV | a first column,
, V, VI, VII, VIII, IX, X
ests repeated for 9 taboo | | | | | | | | | | | | | | | Video Subjective Test Procedures, Sect. 1 Document SSWP2-0390 | | | | | | | | | | | | | | | | Day 21
Day 20 (E) | Basic Received Quality
(Video Subj Tests,
Sect. 1.9) | Ratio | - | | 2 | 1 (E) | | | S14, M1 M10,
M16M20 | | | | 4110 | Subj. rating to be done at CRC. | RF Test Bed is used in all tests but is checked only where * Display: 24=24 NTSC Revrs; LS=Large Scm NTSC; ATV=Hitachi it is used to introduce impairment or interference.